PAPER SENDING

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

REVISTA DYNA ENERGÍA REVISTA DYNA ENERGÍA

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Search Content
    • Volumes/Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News Energy-Sustainability
    • Newsletter
  • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
    • Make a submission
  • Sign in
    • Privacy Policy

Return to the menu

  • Homepage
  • Papers
  • Search Content

Search Content

×

 |    : /

Vote:

Results: 

0 points

 0  Votes

FORECASTING ELECTRICITY CONSUMPTION INCLUDING DATA OF THE PRESENT ECONOMIC AND FINANCIAL CRISIS. APPLICATION TO CANARY ISLANDS

 |    : /

JANUARY-DECEMBER 2015   -  Volume: 4 -  Pages: [13 p.]

DOI:

https://doi.org/10.6036/ES7782

Authors:

GABRIEL WINTER ALTHAUS -
BEGOÑA GONZALEZ LANDIN
- ANTONIO PULIDO ALONSO - BLAS GALVAN GONZALEZ - MUSTAPHA MAAROUF

Disciplines:

  • Electrical technology and engineering (OTRAS (ESPECIFICAR) )
  • Computer Sciences (ARTIFICIAL INTELLIGENCE / INTELIGENCIA ARTIFICIAL )

Downloads:   292

How to cite this paper:  
Download pdf

Download pdf

Received Date :   7 August 2015

Reviewing Date :   15 September 2015

Accepted Date :   15 September 2015


Key words:
Demanda de la energía eléctrica, Predicción a Largo Plazo, Regresión Lineal Múltiple, Regresión Logarítmica, Algoritmos Genéticos, Redes Neuronales Artificiales, Sistemas eléctricos insulares, lectricity Demand, Long-Term Prediction, Multiple Linear Regression, Multiple Logarithmic Regression, Support Vector Machine, Genetic Algorithms, Artificial Neural Networks, Insular Electric System
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

ABSTRACT:
The economic development is the most influential factor on the power consumption of each country and each region, in long term estimation. In years of economic and financial crisis like the current one, a great variability of Gross Domestic Product (GDP) and Consumer Price Index (CPI) is observed. Particularly, CPI is sensitive to changes in the price of energy and the establishment of monetary policy. Therefore, the improvement of including CPI, in addition to GDP and population, as an explanatory variable to forecast the electricity consumption is investigated. For electricity companies it is important to have efficient prediction techniques to reduce uncertainty in the energy demand and obtain an optimal and realistic scheduling of the production of electricity. In pursuit of more objective conclusions, estimates are made using prediction methods of different nature, such as Multiple Linear Regression and Multiple Logarithmic Regression, which are classical statistical techniques, Support Vector Machine, which is a statistical learning technique, a Genetic Algorithm, which is an evolutionary computation techniques and an Artificial Neural Network, which is a machine learning technique. As a case study, the prediction of electricity demand in the Canary Islands is considered. It is of great interest for being an insulated electric system. The best prediction results are obtained with techniques which posses a greater capability to emulate nonlinear dependencies of the electricity demand in relation to population, GDP and CPI.
Keywords: Electricity Demand, Long-Term Prediction, Multiple Linear Regression, Multiple Logarithmic Regression, Support Vector Machine, Genetic Algorithms, Artificial Neural Networks, Insular Electric System.

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search Content

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© DYNA Energia y Sostenibilidad 2012

EDITORIAL: Publicaciones DYNA SL

Adress: Alameda Mazarredo 69 - 2º, 48009-Bilbao SPAIN

Email: info@dyna-energia.com - Web: http://www.dyna-energia.com

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • Journal
    • The Journal and its bodies
      • The Journal and its bodies
      • The Journal
      • Editorial Board
      • Advisory-Scientific Board
    • Diffusion & indexation
    • Mission, Vision & Values
    • Collaborating with DYNA
  • Authors & Referees
    • Authors & Referees
    • Guidelines, rules and forms
    • Collaborating with Journal
  • Papers
    • Papers
    • Search Content
    • Volumes/Issues
    • Most downloaded
    • Sending papers
  • Forum
  • News
    • News
    • News Energy-Sustainability
    • Newsletter
  • Advertising
    • Advertising
    • Advertising at DYNA
    • Advertising rates
  • Contact
    • Contact
    • Contacting
  • Search
    • In this Journal
    • Search in DYNA journals
  • Submit
    • Submit
    • Make a submission
  • Sign in
    • Sign in
    • Privacy Policy

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...