PAPER SENDING SUBSCRIPTION

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

DYNA JOURNAL ENGINEERING DYNA JOURNAL ENGINEERING

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Return to the menu

  • Homepage
  • Papers
  • Search

Search

×

Vote:

Results: 

0 points

 0  Votes

AN IMPROVED STRATEGY OF WHEAT KERNEL RECOGNITION BASED ON DEEP LEARNING

JANUARY 2023   -  Volume: 98 -  Pages: 91-97

DOI:

https://doi.org/10.6036/10686

Authors:

KE HAN
-
NING ZHANG
-
HAOYANG XIE
-
QIANLONG WANG
-
WENHAO DING

Disciplines:

  • Computer technology (SISTEMAS DE RECONOCIMIENTO DE CARACTERES )

Downloads:   203

How to cite this paper:  
Download pdf

Download pdf

Received Date :   18 August 2022

Reviewing Date :   18 August 2022

Accepted Date :   3 November 2022


Key words:
aprendizaje profundo, reconocimiento de imágenes, estrategias mejoradas, modelo de red, granos de trigo
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

The detection of unsound wheat kernels in traditional wheat purchasing is affected by human factors, resulting in wrong wheat grading. At present, computer-based recognition of wheat kernels has generally low accuracy, and few types of wheat kernels can be recognized. To quickly, accurately, and objectively recognize wheat kernels, this study proposed an improved strategy of wheat kernel recognition method based on deep learning. First, a large number of collected wheat images were labeled, and the wheat kernels were divided into five categories: perfect kernels, broken kernels, impurities, sprouted kernels, and moldy kernels. Second, the improved strategies of VggNet-16, ResNet-34, EfficientNet-b2, DenseNet121, and Vit models were proposed. Based on the two-stage target detection method, the improved network model was used to detect wheat kernels. Moreover, the accuracy of the model was verified by performing comparative tests. Results show that the improved network structure is obviously improved, and the highest accuracy rate of wheat kernel identification is 96%. The precision, recall rate, and F1-score of VggNet-16-W, ResNet-34-W, EfficientNet-b2-W, and DenseNet121-W models are above 97%. This study provides a good reference for rapid and accurate detection of wheat quality.

Keywords: deep learning; image recognition; improved strategies; network model; wheat kernels

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© Engineering Journal Dyna 2006 - Publicaciones Dyna, S.L

Official Science and Technology Body of the Federation of Industrial Engineers' Associations

Address: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY

Email: office@revistadyna.com

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...