PAPER SENDING SUBSCRIPTION

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

DYNA JOURNAL ENGINEERING DYNA JOURNAL ENGINEERING

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Return to the menu

  • Homepage
  • Papers
  • Search

Search

×

 |    : /

Vote:

Results: 

0 points

 0  Votes

ANALYSIS OF THE MIXED ELASTOHYDRODYNAMIC LUBRICATION CHARACTERISTICS OF DOUBLE CIRCULAR ARC GEARS CONSIDERING MICRO-MORPHOLOGY

 |    : /

MAY 2024   -  Volume: 99 -  Pages: 325-332

DOI:

https://doi.org/10.6036/11153

Authors:

SHUFENG YANG
-
HANG XU
-
YOUHUA LI
-
FENG WANG
-
WEIJIE ZHANG

Disciplines:

  • Mechanical Engineering and technology (ENGRANAJES )
  • Solid state physics (TRIBOLOGIA )

Downloads:   32

How to cite this paper:  
Download pdf

Download pdf

Received Date :   20 December 2023

Reviewing Date :   20 December 2023

Accepted Date :   8 April 2024


Key words:
ds: Double circular arc gears, Point contact, Mixed EHL, Lubrication characteristics, Micro- morphology, Engranajes de doble arco circular, Contacto puntual, EHL mixto, Características de lubricación, Micro morfología.
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

Different machining methods result in diverse morphologies on the surface of gears. Under mixed lubrication, the friction and contact behavior of the real morphology interface becomes more complex. This study aims to analyze the influence of different process tooth surface micro-morphologies on the lubrication performance of the meshing area of double circular arc gears. Focusing on elastohydrodynamic lubrication (EHL) characteristics of the double circular arc gears as the research object, the study involved measuring the three-dimensional morphology of the meshing position of the double circular arc gears. Non-Gaussian simulation technology was then used to characterize the micromorphology of the tooth surface resulting from different processes (i.e. hobbing process and skiving process). The tooth surface suction speed was determined based on the meshing characteristics of double circular arc gears. Based on the theory of point contact EHL, Reynolds equation and film thickness equation considering micromorphology were derived, and numerical solutions were obtained using the multi-grid method. A point contact EHL model for double circular arc gears was established considering the micromorphology of tooth surfaces in different processes. Results show that, the oil film pressure is positively correlated with rotational speed and torque. The oil film thickness is positively correlated with rotational speed, and negatively correlated with input torque. The negative of micro-morphology on the tooth surface on the lubrication performance could lead to an increase in pressure fluctuations and the absence of the second pressure peak. The uneven distribution of oil film and the lager roughness value could result in obvious fluctuations. The lubrication performance of the contact area in the gear hobbing process is superior to that in the gear skiving process. This study lays the foundation for further exploring the coupling characteristics between the double circular arc gear transmission system and elastic fluid dynamic lubrication.

Keywords: Double circular arc gears, Point contact, Mixed EHL, Lubrication characteristics, Micro- morphology.

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© Engineering Journal Dyna 2006 - Publicaciones Dyna, S.L

Official Science and Technology Body of the Federation of Industrial Engineers' Associations

Address: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY

Email: office@revistadyna.com

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...