PAPER SENDING SUBSCRIPTION

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

DYNA JOURNAL ENGINEERING DYNA JOURNAL ENGINEERING

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Return to the menu

  • Homepage
  • Papers
  • Search

Search

×

Vote:

Results: 

5 points

 1  Votes

DEVELOPMENT OF METHODS BASED ON NEURAL NETWORKS IN THE ESTIMATION OF MINERAL RESOURCES

MAY 2024   -  Volume: 99 -  Pages: 303-310

DOI:

https://doi.org/10.6036/11077

Authors:

AITOR GOTI
-
ELISABETE ALBERDI CELAYA
- HEBER HERNÁNDEZ GUERRA

Disciplines:

  • INFORMATION TECHNOLOGY AND KNOWLEDGE (INTELIGENCIA ARTIFICIAL Y SIMULACION )

Downloads:   18

How to cite this paper:  

Received Date :   9 October 2023

Reviewing Date :   11 October 2023

Accepted Date :   24 January 2024

Interested in this item? You can purchase the item through the payment platform PayPal or credit card (VISA, MasterCard, ...) for 20 €.


Key words:
Redes neuronales, aprendizaje automático, geoestadística, Neural networks, machine learning, geostatistics
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

Due to economic and physical limitations, our understanding of mineral resources in a specific area of interest is limited and fragmented. Traditionally, this problem has been solved using the Kriging geostatistical method, where the ore grade is estimated at unmeasured locations using known values of the grade at surrounding points. The advantage of this method lies in the calculation of weights through a spatial variability model known as a variogram. However, the method is imperfect, as it is based on the assumption of stationarity, aditivity, linearity and potential subjectivity in variographic modelling. This study proposes to approach the mineral resource estimation problem as a regression problem using neural networks, which are not subject to the restrictions of stationarity, aditivity, linearity and spatial modelling of geostatistics methods. Kriging and a radial basis function neural network and a multilayer perceptron have been compared using different validation metrics. The results show that a properly trained neural network model, with appropriate labelling of the mineral grade and its input characteristics, achieves similar results to the geostatistical approach, with a significant reduction in time, while avoiding all the aforementioned assumptions. However, neural networks do not consider the spatial correlation of ore grade or reproduce it at the locations where it was measured, characteristics that have marked distrust in its industrial implementation and that are discussed in this article, finally proposing an adjustment between both approaches at a minimum sacrifice of time and labor costs.

Keywords Neural networks; machine learning; geostatistics.

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© Engineering Journal Dyna 2006 - Publicaciones Dyna, S.L

Official Science and Technology Body of the Federation of Industrial Engineers' Associations

Address: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY

Email: office@revistadyna.com

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...