PAPER SENDING SUBSCRIPTION

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

DYNA JOURNAL ENGINEERING DYNA JOURNAL ENGINEERING

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Return to the menu

  • Homepage
  • Papers
  • Search

Search

×

Vote:

Results: 

0 points

 0  Votes

GRADE COMPOSITION DESIGN AND MECHANICAL PROPERTIES OF COMPACTED MAGNESIUM SLAGS FOR ROAD PAVEMENT BASES

MAY 2023   -  Volume: 98 -  Pages: 252-258

DOI:

https://doi.org/10.6036/10826

Authors:

MENG GAO
-
HONGJUN JING
-
JUN DAI
-
WEICHENG LI
-
ZEWEI LI

Disciplines:

  • Construction technology (CONSTRUCCION DE CARRETERAS )

Downloads:   94

How to cite this paper:  
Download pdf

Download pdf

Received Date :   16 January 2023

Reviewing Date :   16 January 2023

Accepted Date :   13 March 2023


Key words:
road engineering, magnesium slag, gradation design, skeleton-dense type gradation, CBR, ingeniería de carreteras, escoria de magnesio, diseño de la gradación, gradación tipo esqueleto-denso, CBR
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

Gradation composition is crucial to the performance of pavement bases, and differently structured pavement bases vary greatly in pavement performance. However, the gradation range recommended in the relevant code is large without specific provision for the gradation range of low-strength aggregates, such as magnesium slags, which easily leads to a wide selection range of synthetic gradation and weak guiding significance to practical projects. To solve the optimization problem of magnesium slag aggregate gradation design, skeleton-dense type gradation was constructed using the Bailey and Stone asphalt concrete (SAC) gradation methods with magnesium slag materials as the base aggregate. Then, the design gradation was optimally adjusted through compaction tests in combination with the fragile nature of magnesium slag materials. On this basis, the applicable gradation range of magnesium slag aggregates in engineering was obtained, and the gradation optimization design method for this kind of material was formed. Finally, the compaction characteristics and California bearing ratio (CBR) of magnesium slag aggregates with design gradation and those with local specification recommended gradation were analyzed. The test results show that the compaction process significantly influences the target gradation of magnesium slag aggregates, and the cumulative change rate of aggregate gradation of the median design gradation is 37.12%. The bearing capacity of the design gradation is excellent, and the CBR values of the upper limit and the gradation's lower limit are greater than 60%, meeting the paving requirements of different traffic load grades and structural layers. The CBR value of the design gradation is better than that recommended by the specification, which verifies the reliability of the gradation algorithm proposed in this study. This study can provide a theoretical reference for the gradation calculation of low-strength aggregates applied to roads.

Keywords: road engineering, magnesium slag, gradation design, skeleton-dense type gradation, CBR

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© Engineering Journal Dyna 2006 - Publicaciones Dyna, S.L

Official Science and Technology Body of the Federation of Industrial Engineers' Associations

Address: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY

Email: office@revistadyna.com

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...