Search engine :
Return to the menu
Vote:
Results:
2 Votes
NOVEMBER 2018 - Volume: 93 - Pages: 636-642
Download pdf
This work presents a system of supervised learning based on computer vision with the aim of solving the automation of non-destructive inspection tests based on magnetic particles. In this paper, three supervised learning algorithms have been tested: the nearest k neighbor (kNN), a Bayesian classifier (NBC) and the vector support machine (SVM). The developed system has been successfully tested on a set of images extracted during the inspection of magnetic particles on marine structures at the Navantia shipyard in Cartagena. The algorithm that offered the best result was the SVM with a sensitivity of 98.6% and a specificity of 100.0% in the detection of faults by magnetic particles. The vector of characteristics used is composed of a set of 16 elements formed by geometric characteristics and intensity values of the RGB, HSV, and CIE L * a * b * color spaces. The work presents a software application and a hardware system that, using the SVM algorithm, is capable of automatically detecting defects on marine structures during the magnetic particle test.Keywords. Magnetic particles, Non-destructive testing, Machine learning, Computer vision
Share:
© Engineering Journal Dyna 2006 - Publicaciones Dyna, S.L
Official Science and Technology Body of the Federation of Industrial Engineers' Associations
Address: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY
Email: office@revistadyna.com
Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil
Name: *
Surname 1: *
Surname 2:
Email: *