PAPER SENDING SUBSCRIPTION

  • googleplus
  • facebook
  • twitter
  • linkedin
  • linkedin

DYNA JOURNAL ENGINEERING DYNA JOURNAL ENGINEERING

  • Skip to the menu
  • Skip to the content
  • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Return to the menu

  • Homepage
  • Papers
  • Search

Search

×

Vote:

Results: 

0 points

 0  Votes

PREDICTION OF CARDIAC ARRHYTHMIA USING MULTI CLASS CLASSIFIERS BY INCORPORATING WAVELET TRANSFORM BASED FEATURES

JULY 2022   -  Volume: 97 -  Pages: 418-424

DOI:

https://doi.org/10.6036/10458

Authors:

SHIVAPPRIYA SATHYAMANGALAM NATARAJAN
-
ARUN KUMAR SHANMUGAM
-
JUDE HEMANTH DURAISAMY
-
HARIKUMAR RAJAGURU

Disciplines:

  • Telecommunications technology (INTELIGENCIA ARTIFICIAL )

Downloads:   10

How to cite this paper:  

Received Date :   13 January 2022

Reviewing Date :   21 February 2022

Accepted Date :   28 April 2022

Interested in this item? You can purchase the item through the payment platform PayPal or credit card (VISA, MasterCard, ...) for 20 €.


Key words:
ECG, Bradycardia, Tachycardia, Bundle Branch Block, Wavelet Transform, Multi class Classifiers, Arritmia Cardíaca, Transformación Wavelet, Clasificadores Multi-clase, Árboles de Decisión, Máquina de Vectores de Apoyo (SVM), Análisis Discriminante, Clasificadores k-Nearest Neighbor, Clasificadores Ensemble, Clasificador Optimizable
Article type:
ARTICULO DE INVESTIGACION / RESEARCH ARTICLE
Section:
RESEARCH ARTICLES

Timely diagnosis and earlier detection of the dangerous heart conditions will reduce the mortality rate and save life of the patient. For that, it is necessary to automate the classi?cation and prediction of Cardiac Arrhythmia. Raw ECG signal is extracted from the MIT-BIH Arrhythmia database, followed by preprocessing and feature extraction using wavelet transform method. Further the extracted features are used for the classification of four different cardiac arrhythmias such as Bradycardia, Tachycardia, Left and Right Bundle Branch Block. Comparative study on the five different classifiers namely Decision trees, Support Vector Machine (SVM), Discriminant Analysis, k-Nearest Neighbor Classifiers (KNN), Ensemble Classifiers, and its variants are experimented in the proposed work. Among these, the weighted KNN classifier gives higher accuracy (90.3%) and prediction speed (10,000 observations per second) with reduced training time (4.329 seconds), compared with the existing state of the art methods. The prediction speed is 10,000 numbers of observations per second which identifies the heart problem earlier, and so appropriate treatment can be given to the patient. To further improve the classification accuracy, three optimizable classifiers namely Optimizable KNN, optimizable SVM, optimizable ensemble are used for the hyper parameter tunning and weight optimization. The optimizable SVM provides better perform (accuracy 93.4 %) among the three optimizable classifiers as well as the existing state of the art works. Therefore, the proposed work used for earlier Cardiac arrhythmia disease diagnosis and prognosis.
Keywords: ECG, Cardiac Arrhythmia, Wavelet Transform, Multi class Classifiers, Decision trees, Support Vector Machine (SVM), Discriminant Analysis, k-Nearest Neighbor Classifiers, Ensemble Classifiers, Optimizable classifier.

Share:  

  • Twittear
  • facebook
  • google+
  • linkedin
  • delicious
  • yahoo
  • myspace
  • meneame
  

Search

banner crosscheck

  •  
  • Twitter
  • Twitter
  •  
  • Facebook
  • Facebook
  •  
Tweets por el @revistadyna.
Loading…

Anunciarse en DYNA 

© Engineering Journal Dyna 2006 - Publicaciones Dyna, S.L

Official Science and Technology Body of the Federation of Industrial Engineers' Associations

Address: Unit 1804 South Bank Tower, 55 Upper Ground, London UK, SE1 9EY

Email: office@revistadyna.com

  • Menu
  • DYNA Publishing
    • DYNA Publishing
    • DYNA
    • DYNA Energy & Sustainability
    • DYNA Management
    • DYNA New Technologies
  • Journal
    • The Journal and its organs
      • The Journal and its organs
      • Management Board and General Meeting of Shareholders
      • Editors Board
      • Scientific Board
    • History
    • Mission - Vision and Values
    • Annual survey result
    • Frequent asked questions
    • Dissemination and Indexing
    • It is said about DYNA...
    • Collaborate with DYNA
    • Links of interest for engineering
      • Links of interest for engineering
      • FRIENDLY organizations
      • Contributing organizations
      • Engineering Associations
      • Others engineering journals
      • Other interesting links
  • Authors and Referees
    • Guidelines, rules and forms
    • Dissemination and indexing
    • How researchers can collaborate
  • Papers
    • Papers
    • Search
    • Volumes and issues
    • Most downloaded last year
    • Submission of papers
    • Next issue contents
    • Monographic reports
  • News
    • News
    • Newsletters
    • Book Review
    • Software review
  • Blogs and Community
    • Blogs and Community
    • Forums
    • How collaborate
  • Subscribing
    • Sign up
  • Advertising
    • Target audience & ad formats
    • Advertising prices
    • Contents for next issue
    • Newsletter
  • Contact
    • How to contact
  • Search
    • In this Journal
    • Search in DYNA journals

Regístrese en un paso con su email y podrá personalizar sus preferencias mediante su perfil


: *   

: *   

:

: *     

 

  

Loading Loading ...